3.440 \(\int \frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx\)

Optimal. Leaf size=131 \[ \frac{\sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e}-\frac{\left (c d^2-a e^2\right ) \tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{2 \sqrt{c} \sqrt{d} e^{3/2}} \]

[Out]

Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/e - ((c*d^2 - a*e^2)*ArcTanh[(c*d^2
+ a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x +
 c*d*e*x^2])])/(2*Sqrt[c]*Sqrt[d]*e^(3/2))

_______________________________________________________________________________________

Rubi [A]  time = 0.16514, antiderivative size = 131, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 37, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.081 \[ \frac{\sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e}-\frac{\left (c d^2-a e^2\right ) \tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{2 \sqrt{c} \sqrt{d} e^{3/2}} \]

Antiderivative was successfully verified.

[In]  Int[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(d + e*x),x]

[Out]

Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/e - ((c*d^2 - a*e^2)*ArcTanh[(c*d^2
+ a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x +
 c*d*e*x^2])])/(2*Sqrt[c]*Sqrt[d]*e^(3/2))

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 27.0271, size = 122, normalized size = 0.93 \[ \frac{\sqrt{a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )}}{e} + \frac{\left (a e^{2} - c d^{2}\right ) \operatorname{atanh}{\left (\frac{a e^{2} + c d^{2} + 2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )}} \right )}}{2 \sqrt{c} \sqrt{d} e^{\frac{3}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/(e*x+d),x)

[Out]

sqrt(a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2))/e + (a*e**2 - c*d**2)*atanh((a*e*
*2 + c*d**2 + 2*c*d*e*x)/(2*sqrt(c)*sqrt(d)*sqrt(e)*sqrt(a*d*e + c*d*e*x**2 + x*
(a*e**2 + c*d**2))))/(2*sqrt(c)*sqrt(d)*e**(3/2))

_______________________________________________________________________________________

Mathematica [A]  time = 0.250237, size = 133, normalized size = 1.02 \[ \frac{\sqrt{(d+e x) (a e+c d x)} \left (\frac{\left (a e^2-c d^2\right ) \log \left (2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{d+e x} \sqrt{a e+c d x}+a e^2+c d (d+2 e x)\right )}{\sqrt{c} \sqrt{d} \sqrt{d+e x} \sqrt{a e+c d x}}+2 \sqrt{e}\right )}{2 e^{3/2}} \]

Antiderivative was successfully verified.

[In]  Integrate[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(d + e*x),x]

[Out]

(Sqrt[(a*e + c*d*x)*(d + e*x)]*(2*Sqrt[e] + ((-(c*d^2) + a*e^2)*Log[a*e^2 + 2*Sq
rt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*e + c*d*x]*Sqrt[d + e*x] + c*d*(d + 2*e*x)])/(Sqrt[
c]*Sqrt[d]*Sqrt[a*e + c*d*x]*Sqrt[d + e*x])))/(2*e^(3/2))

_______________________________________________________________________________________

Maple [A]  time = 0.008, size = 205, normalized size = 1.6 \[{\frac{1}{e}\sqrt{cde \left ( x+{\frac{d}{e}} \right ) ^{2}+ \left ( a{e}^{2}-c{d}^{2} \right ) \left ( x+{\frac{d}{e}} \right ) }}+{\frac{ae}{2}\ln \left ({1 \left ({\frac{a{e}^{2}}{2}}-{\frac{c{d}^{2}}{2}}+ \left ( x+{\frac{d}{e}} \right ) cde \right ){\frac{1}{\sqrt{cde}}}}+\sqrt{cde \left ( x+{\frac{d}{e}} \right ) ^{2}+ \left ( a{e}^{2}-c{d}^{2} \right ) \left ( x+{\frac{d}{e}} \right ) } \right ){\frac{1}{\sqrt{cde}}}}-{\frac{c{d}^{2}}{2\,e}\ln \left ({1 \left ({\frac{a{e}^{2}}{2}}-{\frac{c{d}^{2}}{2}}+ \left ( x+{\frac{d}{e}} \right ) cde \right ){\frac{1}{\sqrt{cde}}}}+\sqrt{cde \left ( x+{\frac{d}{e}} \right ) ^{2}+ \left ( a{e}^{2}-c{d}^{2} \right ) \left ( x+{\frac{d}{e}} \right ) } \right ){\frac{1}{\sqrt{cde}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d),x)

[Out]

1/e*(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2)+1/2*e*ln((1/2*a*e^2-1/2*c*d^2+
(x+d/e)*c*d*e)/(c*d*e)^(1/2)+(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2))/(c*d
*e)^(1/2)*a-1/2/e*ln((1/2*a*e^2-1/2*c*d^2+(x+d/e)*c*d*e)/(c*d*e)^(1/2)+(c*d*e*(x
+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2))/(c*d*e)^(1/2)*c*d^2

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/(e*x + d),x, algorithm="maxima")

[Out]

Exception raised: ValueError

_______________________________________________________________________________________

Fricas [A]  time = 0.296127, size = 1, normalized size = 0.01 \[ \left [-\frac{{\left (c d^{2} - a e^{2}\right )} \log \left (4 \,{\left (2 \, c^{2} d^{2} e^{2} x + c^{2} d^{3} e + a c d e^{3}\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} +{\left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} + 8 \,{\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right )} \sqrt{c d e}\right ) - 4 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} \sqrt{c d e}}{4 \, \sqrt{c d e} e}, -\frac{{\left (c d^{2} - a e^{2}\right )} \arctan \left (\frac{{\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt{-c d e}}{2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} c d e}\right ) - 2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} \sqrt{-c d e}}{2 \, \sqrt{-c d e} e}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/(e*x + d),x, algorithm="fricas")

[Out]

[-1/4*((c*d^2 - a*e^2)*log(4*(2*c^2*d^2*e^2*x + c^2*d^3*e + a*c*d*e^3)*sqrt(c*d*
e*x^2 + a*d*e + (c*d^2 + a*e^2)*x) + (8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^
2 + a^2*e^4 + 8*(c^2*d^3*e + a*c*d*e^3)*x)*sqrt(c*d*e)) - 4*sqrt(c*d*e*x^2 + a*d
*e + (c*d^2 + a*e^2)*x)*sqrt(c*d*e))/(sqrt(c*d*e)*e), -1/2*((c*d^2 - a*e^2)*arct
an(1/2*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d*e)/(sqrt(c*d*e*x^2 + a*d*e + (c*d^2
 + a*e^2)*x)*c*d*e)) - 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-c*d*e
))/(sqrt(-c*d*e)*e)]

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{\left (d + e x\right ) \left (a e + c d x\right )}}{d + e x}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/(e*x+d),x)

[Out]

Integral(sqrt((d + e*x)*(a*e + c*d*x))/(d + e*x), x)

_______________________________________________________________________________________

GIAC/XCAS [F(-2)]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/(e*x + d),x, algorithm="giac")

[Out]

Exception raised: TypeError